
Speechnet: A Network of Hyperlinked Speech-Accessible Objects

R. A. Frost, Department of Computer Science, University of Windsor, ONT N9B 3P4 Canada

Abstract

The dominant technology for electronic communication
and commerce, the telephone, does not discriminate be-
tween sighted and non-sighted users. The web does dis-
criminate.

The web is primarily based on text and visual scan-
ning. Much of its functionality is inaccessible to visually-
challenged users, or in applications where visual scanning
is inappropriate.

A solution is to augment the web with a network of
speech-accessible hyperlinked objects. Each of these ob-
jects has an associated grammar which defines the lan-
guage that the object can respond to. These grammars
are downloaded to “speech” browsers which use them to
configure their speech-recognizers. This results in highly
accurate user-independent continuous-speech interfaces to
remote knowledge and functions.

A prototype Speechnet has been constructed using IBM’s
Via Voice speech technology and a common Internet com-
munication protocol.

1 Introduction

Speechnet is a network of speech-accessible hyperlinked
objects that reside on servers on the Internet. These
objects, called sihlos, are accessible through remote speech
browsers which provide speech-recognition and speech-
synthesis functionality. Sihlos contain a grammar and
a set of voice properties. When a browser accesses a
sihlo, it begins by downloading the grammar and voice
properties. It uses the grammar to configure the local
speech-recognizer. It also uses the voice properties to
configure the local speech synthesizer. The browser is now
ready to accept user-independent continuous speech from
the user, recognizes the input, coverts it to a character
stream, sends the character stream to the remote sihlo,
which interprets the input and returns an “answer”, which
is converted to synthesized speech by the browser.

Speech-recognition accuracy can be very high owing to
the fact that the speech recognizer is configured by the
grammar to recognize only those expressions which can
be processed by the particular sihlo currently “in scope”.

Sihlos also contain speech activated hyperlinks to other
sihlos. For example, if the user asks “Can I have some

information on bicycles”, the sihlo might respond with
“Yes, I shall get the sporting-goods agent for you”, and
then send the browser the URL of the sporting-goods sihlo.
The browser downloads the new grammar and voice and
waits for user speech input which is then directed to the
sporting-goods sihlo.

This paper is structured as follows:

1. Introduction

2. An example dialogue with Speechnet

3. A description of the current implementation

4. Potential uses of Speechnet

5. Constructing sihlos

6. Building sihlos as executable grammar objects

7. Designing sihlo grammars

8. Deploying sihlos over the Internet

9. Related work

10. Concluding Comments

2 A sample “dialogue” with Speechnet

The following is a transcript of a “dialogue” with
Speechnet. No “voice training” was required and the input
was spoken in natural continuous speech. The computer’s
response is indicated by the prefixc .

y: Hello.
c: Hello, you have reached ABC Retail

Incorporated. How can I help you.
y: Do you sell bicycles
c: Yes, I shall get the sporting-goods

agent for you.
The response from the sihlo now
contains information causing the
browser to switch to the sporting goods
sihlo, which responds with a different
voice
c: Hello, I am the sporting goods

agent. How can I help you.
y: Do you sell mountain bikes?
c: Yes we do.
The browser switches to the mountain

bike sihlo. However, the user is not
informed of the switch this time.
The switch is made to improve speech-
recognition accuracy and to modularize
the information "stored" in the sihlo.
c: What kind of mountain bike are
you interested in.
y: A mongoose
c: We stock three models of mongoose
etc.

The sihlos illustrated in the above are relatively simple
in that they do little more than pattern matching on the
input strings. More sophisticated sihlos can be built which
interpret the input. Such sihlos can be used, for example,
to provide pseudo natural-language querying of complex
databases. The following is an example dialogue with a
sihlo that can answer questions about a limited part of the
solar system.

y: Hello.
c: Hello, I am solar-man, I know

about the planets, moons, and
the people who discovered them.

y: How many moons orbit mars
c: two
y: which planets orbit mars
c: phobos and deimos
y: who discovered phobos
c: Hall
y: did Hall discover every moon
c: no
c: which planet is orbited by phobos
c: mars, you should know that

This sihlo is also accessible through the web using a reg-
ular html browser. Readers who would like to experiment
with this sihlo can access it at:

http://www.cs.uwindsor.ca/users/r
/richard/miranda/wage_demo.html

3 The prototype implementation

The prototype implementation of Speechnet has the fol-
lowing features:

1. The speech-browser is written in Java, uses IBM’s
Via Voice speech engine and IBM’s implementation
of the Java speech APIs. The speech browser can run
on any PC which supports Java.

2. In the prototype, sihlos are stored in cgi-bin directo-
ries on compute servers. Sihlos are accessed over the
Internet through the cgi-bin protocol.

3. Each sihlo is associated with a grammar file which is
also stored in the cgi-bin directory.

4. Existing sihlos have been constructed in various ways
and in various programming languages. According
to the cgi-bin protocol, each sihlo is written so that
it accepts user input as a string of characters, and
responds on the standard output with a string of
characters. The cgi-bin post method is used by the
browser to send input and receive the response from
a sihlo.

5. Sihlos can be built so that the responses for particu-
lar user inputs can include directives to the browser
containing the URL and name of another sihlo which
the browser then contacts. The speech browser also
contains a “go back” function enabling the user to go
back to the last sihlo contacted. The is analogous to
the back button on an html browser.

As discussed later use of the cgi-bin protocol limits the
capabilities of sihlos and an alternative mode of deploy-
ment of sihlos over the net is being investigated.

The prototype operates in real time with no noticeable
pause when grammar files are downloaded from remote
sites. We have not yet tested the system with a huge
grammar file such as that which would be required for
dictation. It is most probable that the downloading and re-
configuration of the speech-recognizer for such grammars
would cause considerable delay in response.

The speech interface requires no training and accepts
continuous (natural) speech. The accuracy of speech
recognition depends on the ’size’ of the input language
as discussed later.

4 Potential uses of Speechnet

The prototype implementation can be used to build
various applications including the following:

1. Natural-language speech interfaces to databases as
illustrated bysolar man .

2. Collections of speech-accessible knowledge that can
be searched by speech commands.

3. Retail information applications such as that given
in the example, which guide potential customers to
product information through speech dialogue.

4. Speech-accessible calculators which can compute the
answer to mathematical questions.

5. Systems which provide up-to-date information acces-
sible through speech requests such as “What is the
exchange rate of the Canadian Dollar?”

6. Translators which can translate an utterance into an-
other language. This application requires a sophis-
ticated approach involving careful construction of
grammars, and clues to help the speech recognizer
correctly recognize the input.

A more sophisticated implementation, for example one
based on CORBA as discussed later, would greatly expand
the potential applications of Speechnet to include:

1. Applications involving dialogue, where the user re-
sponds with speech to requests for information from
the sihlo. For example, in completing a tax return
from spoken information.

2. Games involving dialogue.

3. Remote speech access to computer–controlled de-
vices. For example, to gather data from remote sen-
sors or to control equipment in hostile environments.
Object-oriented programs on remote servers, which
are linked to external devices, could be accessed by
sihlos.

4. Speech access to applications which perform other
tasks in addition to speech responses. For example,
it would be possible to build a sihlo which activates
a printer in response to commands such as “please
run off six copies of the 1999 OCGS report, by noon
today”.

5. Speech-driven browsers of conventional html web
pages. The “web-page” sihlo could obtain the re-
quired web page, process it, and create a grammar
for the recognizer on the fly. This grammar would
be tailored to the html page in scope and would al-
low commands such as “go to link ’University of
Windsor’” to be processed with good recognition ac-
curacy. IBM has already developed a speech-driven
web browser that works like this. The advantage of
using Speechnet in conjunction with such products
is that remote supercomputers can be used to per-
form highly-sophisticated analysis of the web page
in reasonable time, enabling complete and appropri-
ate answers to spoken questions from remote users.
Questions such as “Does this page contain an analysis
of the relationship between the consumption of cof-
fee and the productivity of object-oriented program-
mers?”

5 Constructing sihlos

Simple sihlos can be built by listing all possible inputs
and giving the corresponding output. For example, the
following program code could be part of a sihlo that
responds to simple greetings.

answer "hello" = "Hi, how are you"
answer "hi" = "Hello, how are you"
answer "hello ABC" = "Hello, what

can I do for you"
answer "Hi, Sue"

= "LINK=Hi, I am not sue
but will get her for you;

SIHLOURL=www.cs.uwindsor.ca;
CGI-BIN=cgi-bin/richard;
SILHO=sue.so;"

etc. .

The link is used by the browser to switch to the new
sihlo sue.so at the URl given.

At the same time as constructing the language-
processing part of a sihlo, the developer also has to
construct a grammar used by the speech recognizer. A
grammar suitable for the example above might be as
follows:

s ::= greeting
| greeting name

greeting ::= Hi | Hello | Good-morning
name ::= ABC | Sue | Solar-man

The developer can also determine which type of voice
should be used by the speech-synthesizer when the sihlo
responds.

The language processor, grammar and voice properties
are packaged together as a sihlo and placed in an appro-
priate location on a server that is accessible through the
Internet. In our prototype implementation, sihlos reside in
cgi-bin directories.

Developing the structure of a large collection of sihlos,
and deciding on how they should be hyperlinked is anal-
ogous to the design of a large html web site. However,
no guidelines have yet been developed to facilitate this
process. The work of Arons [1] may be relevant to this
subject.

In many cases, the construction of sihlos is considerably
more complicated than described above. In the following,
we discuss techniques that can be used to construct com-
plex sihlos, design input languages and grammars which
result in high speech-recognition accuracy, and deploy sih-
los more effectively over the Internet.

6 Building sihlos as executable
specifications of the input languages.

All sihlos are language processors in some form or other.
As discussed above, the construction of simple sihlos is
straightforward. The sihlo can use pattern matching on
the input string to determine the response. More com-
plex sihlos, such as solar-man, require more sophisticated
language-processing techniques to be used.

Parser generators such as YACC [10] or Cup [4] can be
used to construct the language-processing part of a sihlos
automatically by “compiling” the grammar defining the
language to be processed. Parser generators are very useful
tools for many applications. However their use in the
construction of sihlos is limited for the following reasons:

1. They requires a fairly high level of programming skill.

2. The resulting language processors are not modular
and their interface with the rest of the program is
non-trivial.

3. They usually do not accommodate ambiguous lan-
guages and therefore cannot be used to build natural-
language interfaces.

An alternative approach is to construct the sihlo as
an executable specification of the input language. Not
only does this facilitate the construction of the language
processor, it has also been shown that this facilitates the
concurrent design of the processor and the grammar for
the speech recognizer [7].

Executable specifications of language processors have
been used in the logic [17] and functional-programming
[2 and 8] communities for many years. The basic idea
is that constructs are added to the programming language
which enable a language-processing program to be built so
that its structure has a one to one correspondence with the
grammar of the language to be processed. For example,
consider the grammar G given in section 3, which de-
fines a language that includes“Hello” , , “Hi Sue’ ,
“Good-morning ABC” , etc

s ::= greeting
| greeting name

greeting ::= Hi | Hello | Good-morning
name ::= ABC | Sue | Solar-man

Using the parser-combinators (higher-order func-
tions) $then , $orelse , and term , from the
functional-programming paradigm, one can construct
a recognizer for the language defined by this grammar

as follows:

s = greeting
$orelse

(greeting $then name)
greeting = hi $orelse hello

$orelse good_morning
name = abc $orelse sue

$orelse solar-man
hi = term "Hi"
hello = term "Hello"
etc.

The correspondence between the program and the grammar
is one-to-one.

The solar-man sihlo is constructed entirely as an
800–line executable specification of an attribute grammar.
It can answer tens of thousands of questions. An attribute
grammar consists of semantic rules as well as syntactic
rules. Making an attribute grammar executable allows one
to specify and implement the processes by which results
from compound expressions are computed from their parts.
A complete listing of thesolar-man code is accessible
through the web page given earlier.

It has been shown [5] that the functional parser-
combinator method can be adapted for use in object-
oriented software development through the definition of
new constructs calledExecutable Grammar Objects.The
basic idea is that a class of language processors is defined
and extended to the subclassesterm , then andorelse .
Instances ofterm are created through a constructor which
takes a token such as “Hi” as input. Instances oforelse
are constructed and their “alternatives” set by passing al-
ternative processors to asetAlternatives method.
Instances ofthen are created in a similar manner. Al-
though the approach requires the introduction of more
syntax to the grammar in order to convert it to an object-
oriented program, the process is nearly clerical.

The main advantage of the use of executable grammar
objects is that complex sihlos can be constructed as highly
modular executable specifications which are easy to con-
struct, modify, reuse and deploy in a distributed- comput-
ing environment using the most advanced Internet com-
munication protocols. A more comprehensive account is
given in [7]

7 Designing sihlo grammars

Designing powerful and accurate speech interfaces is a
difficult task. Increasing the functionality of an interface
often involves increasing the expressiveness of the input
language, and this often results in a decrease in speech-
recognition accuracy. Speechnet overcomes this problem

to some extent by allowing the functionality, and the
input language, to be divided into modules (the sihlos).
However, in some cases it is not possible to subdivide the
functionality of a sihlo, and the resulting input language
may need to be carefully designed in order to achieve
acceptable recognition accuracy. The following are some
techniques that can be used to modify input languages:

1. The vocabulary can be restricted. It has been shown
that humans can readily adapt to relatively severe
restrictions [12].

2. Replace problem words with equivalent words that
are more easy to distinguish from other candidate
words.

3. Replace a phrase by a word. For example, the
phraseperson who discovered something
could be replaced by the worddiscoverer . In
some cases, accuracy may be improved if the single
word is used.

4. Replace a word or a phrase by an equivalent phrase.
For example, the wordwho could be replaced by
the phrasewhich person . This might overcome
recognition problems when phonetically ’low-key’
words such aswho are used.

5. Restrict the input language so that only those ut-
terances that are semantically (as well as syntacti-
cally) correct are considered as candidates. For exam-
ple, discovered by Hall would be considered
as a candidate butdiscovered by mars would
not. In syntax-directed speech recognizers this can
be achieved by coding semantic constraints as syn-
tactic rules in the grammar which is used to direct the
recognition process. Young et. al [19] have shown
how this approach can be used to build robust inter-
faces by having layers of grammars. If an utterance is
failed to be recognized at one level of constraints, the
constraints are relaxed and a more general grammar
is used. Use of grammars augmented with semantic
constraints is also discussed in [18].

6. Modify the input language so that the recognition
search space at problematic points in the utterance
is reduced. For example, recognition accuracy can
be improved for syntax-directed speech recogniz-
ers if proper names are preceded by qualifying
phrases which limit the search space at the prob-
lem point. For example, by replacinghall by
the person called hall the search space is
reduced from the total number of proper-names in
the system to the number of names of people.

There are trade-offs which have to be investigated when
such techniques are used: The modified language will of-

ten be less natural to use, recognition time may increase,
or significant changes may have to be made to the inter-
preter that uses the output from the speech recognizer. A
case study of applying these techniques is given in [7].

8 Deploying sihlos over the Internet

The current implementation of Speechnet has a number
of shortcomings. The most important is that the cgi-bin
protocol only supports “sessionless” communication. It is
not easy to construct sihlos which have a dialogue with
users.

An alternative to the cgi-bin protocol is to use the
Common Object Resource Broker Architecture CORBA
[3].

CORBA provides a framework which allows distributed
processing involving objects executing on different com-
puters in a heterogenous computing network. CORBA is
based on the OMG Object Model which provides a means
by which the external behavior of objects can be specified
in a way that is independent of the language in which the
object is written. These specifications form an interface
through which clients can request services from objects
that may reside on remote compute servers running differ-
ent operating systems. There are several implementations
of CORBA. Some of these implementations, eg Orbix [9],
support distribution of objects on Windows and Unix sys-
tems.

There are many advantages of using CORBA. In par-
ticular, it would enable the creation of more sophisticated
sihlos as discussed in section 4.

9 Related work

A substantial amount of work has been done in building
non-visual web browsers [21]. That work addresses a
different but related problem to that addressed by the work
described here.

Techniques for presenting ‘speech as data’, allowing a
user to navigate by voice through a database of recorded
speech without any visual clues have been investigated by
Arons [1]. That work has some relevance to the design of
hyperlinked collections of sihlos.

A non-visual browser has been developed by Morley et
al. [14] but uses techniques other than speech to navigate
the knowledge base.

Techniques related to executable grammar objects have
been presented by other researchers. For example: Mor-
eira and Clark [13] have developed a method which inte-
grates formal description techniques with standard object-
oriented analysis methods. In their approach, the specifi-
cations are executable and prototyping can be used to vali-
date the specification against the requirements, thereby en-

abling the early detection of inconsistencies, omissions and
ambiguities in the requirements definition. Peake and Salz-
man [16] have extended the functional approach to mod-
ular parsing by adding the object-oriented constructs of
class inheritance and dynamic method dispatch. Their ap-
proach differs from the use of executable grammar objects
as it extends the functional approach rather than adapting
it for use in an object-oriented language.

10 Concluding Comments

The work described in this paper appears to be the
first to propose the development of a network of speech-
accessible hyperlinked objects whose grammars can be
downloaded by remote speech browsers in order to achieve
high recognition accuracy. The prototype implementation
has demonstrated the viability of the approach. Some tech-
niques are being developed to facilitate the construction of
language processors and the design of sihlo grammars

If adequate tools can be built to simplify the construc-
tion of sihlos, Speechnet (or similar networks) have the
potential to significantly improve access to knowledge and
electronic functions, for visually-challenged users, and in
applications where visual browsing is not appropriate.

11 Acknowledgments

The concepts underlying Speechnet, speech-accessible
hyperlinked objects and executable grammar objects have
resulted from a long–term NSERC-funded research project
involving many people at the University of Windsor. In
particular, the author wishes to acknowledge Sanjay Chitte
who wrote the Java code for the Speechnet browser,
Tarek Haddad, who developed a speech interface to web
pages, Barbara Szydlowski who wrote a text-based web-
interface to the natural-language processors, Ono Tjan-
dra who patiently explained the advantages and disadvan-
tages of Corba, and Walid Mnaymneh, Maunzer Batal, and
Stephen Karamatos who provided technical help through
the project. The author also wishes to thank Peter Best and
Zdenek Vopat, two remarkable students, who volunteered
to act as test-drivers surfing Speechnet.

12 References

[1] Arons, B. (1991) Hyperspeech: Navigating in Speech-Only Hy-
permedia. In Proceedings of Hypertext ’91 (San Antonio, TX,
Dec. 15-18), ACM, New York, 1991, pp. 133-146.

[2] Augusteijn, L. (1993)Functional Programming, Program Trans-
formations and Compiler Construction. Phillips Research Labo-
ratories. ISBN 90–74445–04–7.

[3] CORBA: http://www.egr.msu.edu/˜thakkarv
/corba.html

[4] Cup:http://www.cs.princeton.edu/˜appel
/modern/java/CUP/CUPman.html

[5] Frost, R. A. (1999) Improving the Efficiency of Executable
Grammar Objects. University of Windsor Computer Science
Technical Report CS0099–1.

[6] Frost, R. A., and Chitte, S. (1999) Sihlos: Speech-accessible
hyperlinked objects. University of Windsor Computer Science
Technical Report CS0099–3.

[7] Frost, R. A.. (1995) Use of executable specifications in the con-
struction of speech interfaces, Proc.IJCAI Workshop on Devel-
oping AI Applications for the Disabled.University of Montreal,
1995.

[8] Frost, R. A. (1992) Constructing programs as executable attribute
grammars.The Computer Journal35 (4) 376 — 389.

[9] Iona: www.iona.com

[10] Johnson, S. C. (1975) YACC – Yet Another Compiler Compiler,
CS Technical Report #32,Bell Telephone Laboratories, Murray
Hill, NJ.

[11] Leermakers, R. (1993)The Functional Treatment of Parsing.
Kluwer Academic Publishers, ISBN 0–7923–9376–7.

[12] Moody, T. S. (1988) The effects of restricted vocabulary size
on voice discourse structures.PhD Thesis, North Carolina State
University.

[13] Moreira, A, and Clark, R (1996) Adding rigor to object-oriented
analysis.IEE Software Engineering Journal11 (5) 270–280.

[14] Morley, S., Petrie, H., O’Neill, A., McNally, P. (1998)Audi-
tory Navigation in Hyperspace: Design and Evaluation of a Non-
Visual Hypermedia System for Blind Users. The Third Interna-
tional ACM SIGCAPH Conference on Assistive Technologies
ASSETS ’98, April 15-17, 1998, Marina del Rey, CA USA

[15] Paakki, J. (1995) Attribute grammar paradigms — a high-level
methodology in language implementation,ACM Computing Sur-
veys27(2) 196–255.

[16] Peake. I. and Salzman, Eric (1997) Support for modular parsing
in software reengineering.Proc. International Workshop on
Software Technology and Engineering Practice, STEPJul 14–18
1997, 58–66.

[17] Pereira, F. and Warren, D. H. D. (1978) Definite Clause Gram-
mars compared with Augmented Transition Networks.Technical
Report, Department of Artificial Intelligence, University of Ed-
inburgh.

[18] Seneff, S. (1992) TINA: A natural language system for spoken
language applications.Computational LinguisticsMarch 1992
61–86.

[19] Young, S. R., Hauptmann, A. G., Ward, W. H., Smith, E. T.
and Werner, P. (1989) High level knowledge sources in usable
speech recognition systems.CACM 32 (2) 183–194

[20] Zumer, V., Korbar, N. and Mernik, M. (1997) Automatic im-
plementation of programming languages using object oriented
approach,Journal of Systems Architecture43 (1) 203–210.

[21] Zajicek M., Powell C., Reeves C., (1999), ’Web search and orien-
tation with BrookesTalk,’ California State University Northridge,
CSUN ’99, Technology and Persons with Disabilities, Los An-
gles.

