
LRRP SpeechWebs

Richard Frost, Nabil Abdullah, Kunal Bhatia, Sanjay
Chitte, Fadi Hanna, Maxim Roy, Yue Shi and Li Su.

School of Computer Science, University of Windsor, Ontario, Canada
richard@uwindsor.ca

Abstract

This paper describes a new architecture for access-
ing hyperlinked speech-accessible knowledge sources
that are distributed over the Internet. It differs from
the use of speech interfaces to conventional web html
pages; from conventional telephone access to remote
speech applications (as used in many call centers); and
from the use of a network of hyperlinked VXML pages.
The architecture is ideally suited for use when cell-
phones become available with built-in speech-to-text
and text-to-speech capabilities.

Keywords: SpeechWeb, hyperlinked speech appli-
cations, distributed speech recognition.

1. Introduction

Dale Hartzell, V.P. Sandcherry Inc., has quoted
a Kelsey Group study which estimates that speech-
enabled services will generate over $4.6 billion in ser-
vice revenue for North American wireless carriers, and
$25 billion worldwide, by 2006. Hartzell claims that
this will only become a reality if speech solutions can
deliver flexibility, scalability and economy [10], and
can be deployed as easily as web services can be de-
ployed [11]. It is our belief that these requirements can
only be met if currently-used distributed-speech archi-
tectures are augmented with a new architecture that we
shall refer to as an LRRP SpeechWeb architecture.

An LRRP SpeechWeb uses Local thin-client
application-specific speech Recognition and Remote
natural-language query Processing. Users navigate
an LRRP SpeechWeb using voice-activated hyperlink
commands, and query the knowledge sources through
spoken natural-language using a speech browser exe-
cuting on a local device [4]. Natural-language speech
input is required as it is difficult for end-users to ex-
press queries verbally in a formal query language such
as SQL.

Currently, the preferred speech-recognition technol-
ogy for LRRP SpeechWeb browsers is grammar based,
rather than statistical, for two reasons: 1) large cor-
puses are needed to build statistical speech models and
such data is not available for many of the user-built
knowledge sources, and 2) readily-available commer-
cial speech-recognition technology that can be executed
on lightweight end-user devices is grammar-based.

When an LRRP SpeechWeb browser is directed
to a remote hyperlinked knowledge source (which we
shall refer to as a "sihlo" from now on) it begins by
downloading a recognition grammar which is used to
tailor the browser to the knowledge contained in the
remote sihlo. Queries that are subsequently recognized
on the local device are then sent to the remote sihlo
for processing. Answers that are returned to the local
browser are output as synthesized voice. If a navigation
command is spoken, the sihlo returns the address of
another sihlo to which the browser is redirected in
a manner similar to the following of a link in the
conventional web.

Grammars can be simple or complex, and sihlos can
be constructed in any programming language. In the
most-simple case, the grammar might consist of a list
of questions that can be asked; and the natural-language
query processor could be coded in a scripting language
as a set of "canned" answers of the form "if the input is
"what is your name" the output is "Joe Smith"". Service
providers with more advanced programming knowledge
can construct more sophisticated sihlos

1.1 How LRRP SWs differ from speech
interfaces to the conventional web

Speech interfaces that are used to interact with con-
ventional html pages have been available for several
years. Early versions allowed users to scan html pages
using voice commands and output text in synthesized
voice. More recent products translate conventional web

pages into speech dialogues usually coded in VXML
(see below). Such interfaces are useful in some applica-
tions, but have shortcomings which result from the fact
that html pages are designed for visual browsing, and
users cannot ask database-query-like questions about
html-page contents. In addition, key-word and phrase-
matching techniques that are used by web search en-
gines are not appropriate for speech access as the range
of possible words and phrases is so large as to preclude
acceptable speech-recognition accuracy.

1.2 How LRRP SWs differ from telephone
access to remote VXML applications

Call centers allow users to phone in and speak to
applications running on their machines. Speech recog-
nition is carried out at the call centre. The emerg-
ing standard for implementing the remote applications
is the voice-application markup language VXML [14].
VXML is much like html except that it includes com-
mands for prompting user speech input, for invoking
grammars for recognizing input, for outputting synthe-
sized voice, for iteration through blocks of code, for
calling ECMA scripts or Java objects, and for calling
remote VXML pages that are downloaded and executed
by the VXML interpreter in a similar way as html pages
are linked in the conventional web.

A relatively-recent development is to integrate the
call-centre model with 1) software that converts html
pages to VXML dialogues as discussed in 1.1 above,
and 2) software that allows VXML pages to be stored
on conventional web servers and be accessed through
remote telephones [18]. We shall refer to the call-centre
architecture and its extensions as the Remote Recogni-
tion/Remote Processing (RRRP) SpeechWeb architec-
ture. The RRRP architecture is finding numerous ap-
plications in industry and is likely to see huge growth
over the next few years. However, it has three short-
comings: 1) For complex applications, the speech-
recognizer needs to be trained for the individual user in
order to achieve the required level of accuracy. With
the RRRP architecture, user profiles that are developed
through training would have to be stored at each call
centre. This is clearly not practical if a large Speech-
Web is to be established. 2) With the RRRP archi-
tecture, all speech recognition is carried out at the
service-provider site placing a huge computational bur-
den on the provider’s machines for applications with
complex input languages, 3) As noted by Herzell de-
ploying speech services should be as easy as deploying
regular web services. In the RRRP architecture, service
providers have to embed their applications in VXML,
provide speech-recognition capabilities, maintain user

voice-profiles to improve accuracy, and employ spe-
cialized software to make speech applications avail-
able over the web. In contrast, our proposed LRRP
architecture requires only that the provider maintain a
recognition grammar in a standard format (eg the Java
Speech Grammar Format-JSGF) and a small script to
make their applications available through a text-in/text-
out web protocol such as CGI (see later). The grammar,
script, and application can all be placed in a regular web
directory alongside html pages.

1.3 How LRRP SWs differ from sets of
downloadable hyperlinked VXML pages

A voice application can be constructed as a set of
hyperlinked VXML pages [14]. Such pages can be
downloaded to VXML interpreters executing on client
machines which perform functions locally as directed
by the VXML page, including answering queries pos-
sibly involving access to remote sources. We refer to
such use of VXML as a Local Recognition/Local Pro-
cessing (LRLP) SpeechWeb architecture. The LRLP
architecture is appropriate for many applications but
has shortcomings for others: 1) natural-language query
interfaces and their associated knowledge sources can
be very large and are best executed at remote sites if the
end-user has a lightweight device, 2) providers should
be able to use whatever programming language they
like and not have to embed their applications in VXML
for the reasons discussed above.

1.4 Potential use of LRRP SpeechWebs
and problems to be solved

The LRRP architecture can be integrated with
speech interfaces to the conventional web, with call-
centre style architectures, and with collections of
VXML pages. The architecture is ideally suited for
general-purpose speech access to distributed hyper-
linked knowledge sources, especially when lightweight
end-user devices, such as J2ME/VXML-enabled cell-
phones become available. LRRP SpeechWeb browsers
and their recognizers can be tailored for individual
users thereby significantly improving recognition ac-
curacy. In addition, in an LRRP SpeechWeb the
natural-language query processors can be written in any
language and can be executed on appropriately-sized
computers at the remote sihlo sites. This architec-
ture allows sophisticated speech applications, as well
as simple "canned-answer" applications, to be easily
added to a SpeechWeb with no need for end-users to
have costly local devices. The following is an example
of a SpeechWeb session:

AN EXAMPLE SESSION WITH AN LRRP SPEECHWEB

The user begins by accessing a sihlo whose address is input at the
beginning of the session, or chosen through speech from bookmarked sihlos.

Suppose the initial sihlo is a bicycle sihlo. It responds by sending a recognition
grammar to the browser on the user device and prompting the user:

bicycle sihlo: Hi, I am the bicycle expert.

User: What do you know about?
The user input is recognized using the bicycle grammar and sent to the bicycle sihlo.

bicycle Sihlo: Bicycle repair, mountain-bike trails and clubs.

User: Please tell me something about mountain-bike trails.
The browser is redirected to the mountain-bike-trail-sihlo whose grammar is downloaded

Mountain-bike-trail-sihlo: Hi, I know something about mountain-bike trails.
Where do you want to go cycling?.

User: Near Pontiac.
This user input is sent to the mountain-bike trail sihlo.

Mountain-bike-trail-sihlo: Sorry, input must be a Canadian Province or an American State

User: Michigan please.
The browser is redirected to the Michigan mountain-bike trail sihlo whose grammar

is downloaded.
Sihlo: Hi, I know about some bike trails in Michigan.

User: Are there any trails near Pontiac?

Sihlo: Yes, there are four trails near Pontiac. etc.

A number of problems must be solved if LRRP
SpeechWebs are to be widely employed as a means
of providing speech access to distributed hyperlinked
knowledge sources:

1. SpeechWeb browsers need to be easy to install and
execute on conventional PCs, Laptops, cellphones,
and other lightweight end-user devices.

2. Natural-language speech-recognition accuracy has
to be improved for database-type queries in which
little or no context is available to guide the rec-
ognizer.

3. Tools have to be developed to facilitate the con-
struction of natural-language database query pro-
cessors to help knowledge providers build sihlos.

4. Theories of natural-language semantics have to be
extended to cover a wider range of database-query
like expressions.

5. Protocols have to be developed to limit the way in
which questions can be asked, and define a min-
imal set of questions that all sihlos must support
(eg "what can I say").

In the following, we discuss these problems and
present some partial solutions. We begin with a very
practical issue and progress to more theoretical consid-
erations.

2. Improving accessibility to LRRP
SpeechWeb browsers

Over the last four years, we have experimented with
a number of languages and communication protocols
for building LRRP SpeechWeb browsers. Our initial
browsers, which were demonstrated at PACLING [4],
WECWIS [7], and AAAI [6 and 8], were built in
Java using IBM’s speech API’s and communicated with
remote sihlos through the Common Gateway Interface
- CGI protocol. Our experience has led us to conclude
that:

1. CGI is an appropriate protocol: it is supported by
most operating systems, is easy to use, and re-
quires no administrative layer, as does CORBA
for example. Users can extend an LRRP Speech-
Web by placing natural-language processors and
associated grammars in CGI directories in much

the same way as the conventional web is extended
by adding html pages to web directories.

2. The SpeechWeb browser should not contain any
proprietary components as we were unable to dis-
tribute our browser for use by others.

We decided to rebuild our browser as a single sim-
ple VXML script to be executed by a VXML interpreter
running on the local end-user device. At first, this ap-
peared to be straightforward. The browser was coded as
two nested iterative loops: the outer loop being cycled
whenever a redirect to a new sihlo is required; the inner
loop being cycled for each user question. Recognition
grammars were to be downloaded at the beginning of
each cycle of the outer loop. Questions entered by the
user were to be sent to the remote sihlos by use of a
VXML command which invoked a Java object to send
the question, via an HTTP Post command, over the In-
ternet to the CGI host. Answers were to be returned
from the host, through CGI, to the VXML browser
which would output them through synthesized voice.
Unfortunately, this approach did not work. The rea-
son is that, in VXML, remote grammars are retrieved
by commands that require the grammar location to be
given as literal text. The address of the location cannot
be changed at runtime. This problem cannot be over-
come by using a fixed address of a local file which is
used to hold the grammars and whose contents can be
changed whenever a redirection to a new sihlo is is-
sued to the browser. The reason is that VXML caches
grammars when first retrieved. Therefore, even if the
grammar in the local store is changed in each cycle
through the outer loop, only the first grammar retrieved
in a session will be used by the VXML recognizer.

Our solution to this practical problem was to design
the LRRP browser so that, whenever a redirect to a new
sihlo is required: 1) it calls a script that creates a copy
of the browser containing a different grammar-retrieval
command with the new location, and then 2) redirects
the local VXML interpreter to use the new browser
instead of itself. This solution enables the SpeechWeb
browser to be constructed as a single VXML page with
two simple associated Java objects. The approach has
been successfully tested on laptops and PCs.

3. Improving accuracy through
recognition-grammar design

Recognition accuracy is affected by both language
size and branching factors. The size of a language is
the number of expressions that can be generated by the
defining grammar. The branching factor (perplexity)

for a phrase is the number of different words with which
that phrase can begin.

In addition to accuracy, another important prop-
erty of a speech application is "robustness": the
ability of the system to accommodate unexpected or
grammatically-incorrect utterances. Robustness and
accuracy are competing features with grammar-based
recognition. It is reasonable to assume that: 1) the
most-robust recognition grammar is a "word-sequence
grammar" consisting of a single rule stating that the
input consists of any sequence of words from the ap-
plication vocabulary. The average perplexity is the
size of the vocabulary, resulting in poor accuracy for
anything other than simple applications. 2) The next
most-robust grammar is a "syntactic grammar" contain-
ing rules that constrain the input language to utterances
that are syntactically (grammatically) correct. Syn-
tactic grammars provide significantly-greater accuracy
than word-sequence grammars. 3) The least robust,
but most-accurate grammar is a "semantic grammar"
which constrains the input language to utterances that
are semantically as well as syntactically correct; i.e.
utterances that make sense to someone who knows the
capability of the application.

What is not clear, is the level of accuracy that can
be expected for different sizes of language, and the
level of improvement in accuracy that can be achieved
(at the expense of robustness) when adding syntactic
and/or semantic constraints to a grammar. We were sur-
prised to find that very little has been published on this
topic despite the fact that commercial grammar-based
speech-recognition software has been readily-available
for over five years. (Numerous useful tutorial-style pa-
pers on voice application design are available on the
web (e.g. IBM [12]), but they say little about this
aspect of grammar design. We did discover some re-
search that was carried out using different recognition
technology, which showed that users have reasonably
high tolerance for reduced vocabularies [15]. How-
ever, that result is only relevant for a limited type of
application.

We decided, therefore, to undertake an experimen-
tal investigation of grammar design using our LRRP
SpeechWeb browser. We used three grammars in one
experiment, and then extended them by increasing their
vocabularies in a second experiment. The database con-
tained some geographic information as well as informa-
tion about the solar system. Example queries defined
by the semantic grammar are: "How many moons orbit
mars?" "Which moons were discovered by Kuiper or
Hall?", "Does every moon orbit a red planet?", "Which
city is the capital of China?"

Grammar Language size Branching
factor

semantic 2.7 * 1012 39.6

syntactic 3.05* 10 15 95.5

word sequence 2.31* 10 24 273

extended grammars

semantic 5.55* 10 12 95.6

syntactic 8.17* 10 15 267.3

word sequence 2.40* 10 27 547

Two subjects took part in the experiments: a male
native-English speaker and a female non-native-English
speaker. Three types of database queries were used
as sample utterances: 1) queries that were semanti-
cally (i.e. made sense) as well as syntactically correct,
2) queries that were only syntactically correct, and 3)
queries that consisted of sequences of words from the
vocabulary that were neither semantically nor syntacti-
cally correct. The complete results of the investigation
are available in a Master’s thesis [20]. The following
table summarizes some of the results for the extended
grammars:

Type of
queries

Grammar
used

Correct Incorrect Not
recognized

semantically
correct

semantic 75% 4 21

syntactic 66 14 20

word
sequence

12 60 28

syntactically
correct

semantic 0 22 78

syntactic 65 5 30

word
sequence

8 44 48

neither

semantic 0 10 90

syntactic 0 30 70

word
sequence

15 56 29

Many of the results were as expected. The seman-
tic grammar was the most accurate for semantically-
correct queries, and the least robust for the other types
of query. The syntactic grammar was the most accurate
for syntactically-correct utterances. The word-sequence
grammar was the least accurate for all but the word-
sequence queries, where it was able to correctly recog-
nize a small percentage of the utterances. There were

three unexpected results: 1) the accuracy of the se-
mantic and syntactic grammars were both unexpectedly
high (for semantically and syntactically-correct queries
respectively) given the perplexity and size of the lan-
guages defined by these grammars, 2) the improvement
in accuracy of the semantic grammar compared to the
syntactic grammar was largely a result of a signifi-
cant decrease in misrecognized queries rather than a
decrease in not-recognized queries (this is important
as it is easier to deal with not-recognized rather than
misrecognized utterances), and 3) the word-sequence
grammar was able to correctly "spot" a reasonable num-
ber of words in the input despite defining a very large
language.

4. Constructing natural-language
database-query processors
as executable specifications
of attribute grammars.

Although simple sihlos can be easily constructed
in any programming language, there is a need for
software to facilitate the construction of sophisticated
natural-language query processors. One approach is
to transform the queries into SQL or some other for-
mal database-query language. However, this intro-
duces a level of indirection, reduces the modularity
of the processor, and limits the range of queries that
can be accommodated owing SQL’s inability to handle
general negation, modality, and intensionality. Other
approaches that are based on keyword and phrase-
matching techniques are of no use for questions that re-
quire answers to be computed from the contents of one
or more data stores. Such computation has to be "com-
positional" in the sense that the answer to the whole
query must be computed from the meanings of its parts,
using some well-defined rules.

When a large variety of query structures have to
be accommodated, the rules used to compute mean-
ings are usually applied according to the syntactic
structure of the query. (The alternative would be to
have an unmanageably-large set of query patterns.)
Such syntax-directed evaluation is regularly used in the
processing of programming and command languages.
Building a program to parse the input and apply se-
mantic rules to compute an answer is not an easy task.
In order to facilitate this process, such programs can
be constructed as executable specifications of attribute
grammars which define the syntax and the semantics of
the query language [17]. Using this approach, parsing
and semantic-rule application is carried out by library
functions that are hidden from the programmer. In or-

der to test the viability of this approach in the context of
an LRRP SpeechWeb, we used the Windsor Attribute
Grammar Programming Environment W/AGE [5]. This
environment can be used by people with relatively-little
programming experience to construct advanced natural-
language query interfaces.

The following "attributed rule" is part of a W/AGE

program that computes the answer to simple queries
such as "who discovered a moon that orbits a red
planet?" The rule states that a simple noun clause con-
sists of a common noun orelse a number of adjectives
followed by a common noun, in which case the value
returned is obtained by intersecting the value of the
adjectives and the value of the common noun:

snouncla = cnoun
$orelse structure(s1 adjs ++ s2 cnoun)
[a_rule (NOUNCLA_VAL $of lhs EQ intersect[ADJ_VAL $of s1, NOUNCLA_VAL $of s2]]

Example application:
snouncla (tokenize "red planet spins") =>[[[NOUNCLA_VAL [e_mars]], [WORD "spins"]]]

The complete program is approximately 800 lines
long and can answer over 120,000 questions. We have
used W/AGE to build other natural-language processors
that we have embedded in sihlos and added to the ex-
perimental SpeechWeb. Owing to the fact that W/AGE
programs are interpreted, it was necessary to write sim-
ple Unix scripts to allow the W/AGE processors to be
invoked through the CGI protocol on the host machines
where the sihlos were stored.

5. Improving expressiveness:
a compositional semantics for
natural-language queries

No matter how the natural-language query proces-
sors are built, we must first begin with a compositional
semantics for the subset of natural-language to be used.

5.1 Difficulty of developing a
compositional semantics

The development of such semantics is not easy. For
example, consider the queries "does phobos spin?" and
"does every planet spin?" A naive approach would be
to have intransitive verbs and common nouns, such as
"spin" and "planet" denote unary relations; and proper
nouns such as "phobos" denote entities. The rules of
composition would then be as follows, where ||x||

stands for the denotation of x.

query ::= "does" proper_noun intransitive_verb
answer = True

if ||proper_noun||
is_a_member_of ||intransitive_verb||

= False otherwise

query::= "does" "every" common_noun
intransitive_verb

answer = True
if ||common_noun||
is_a_subset_of ||intransitive_verb||

= False otherwise

Now consider extending these rules to accommo-
date queries such as "does phobos and every planet
spin?", "does phobos and deimos spin?" etc. Do we
need to define a different rule for each of these types
of query? If so, we will need hundreds of rules for
even a relatively small query language. The solution is
to identify a "small" grammar that covers the query lan-
guage, and a matching "semantic theory" which assigns
a single semantic rule to each of the syntax rules in the
grammar. This difficult task is further compounded by
other features of natural language including ambiguity,
modality, and intensionality.

5.2 Use of Montague semantics

We have investigated various semantic theories as
a basis for the sihlo natural-language query proces-
sors. Our investigation has led us to recommend the
compositional semantics of Richard Montague [16 and
2]. Montague’s semantics is based on the concept that
words and phrases denote functions in a function space
constructed over the boolean values True and False,
an infinite set of entities, and a set of possible worlds.
No word, or pfrase, denotes an entity directly. As a
simple example, proper nouns such as "phobos" denote
higher-order functions that take properties such as that
denoted by "spins" as argument and return True if that
property is true of the entity e_phobos (which is repre-
sented internally). Determiners such as "every" denote
higher-order functions which take two properties p1 and

p2 as arguments and return a boolean value. For ex-
ample, ||every||returns True if every entity that has
property p1 also has property p2. This approach solves
the problem of combining denotations of termphrases
discussed above, owing to the fact that ||phobos||

and ||every moon|| are now functions of the same
type (both take a property as argument and return a
Boolean). The denotation of the word "and" can now
be defined as follows:

and f g = h where h p = (f p) & (g p)

That is, ||and||is a higher-order function that takes
two functions fand g (e.g. denoted by "phobos" and
"every moon") and returns a function h such that the
result of applying h to a property p (e.g denoted by
"spins") is obtained by applying f to p, and g to p, and
then conjoining (&) their results.

Montague’s semantics provides a highly orthogonal
compositional semantics for many aspects of natural
language including quantification, and modal and in-
tensional expressions.

5.3 Implementing Montague semantics in
the natural-language query processors

Montague was not concerned with implementation
and his semantics cannot be used directly in a natural-
language interface as it is computationally intractable.
However, a tractable subset of Montague semantics
can be readily implemented by replacing characteristic
functions of sets by the sets themselves, and modifying
all other denotations accordingly.

In our investigation, we coded a tractable version
of Montague semantics in the attribute rules of an exe-
cutable specification of an attribute grammar written in
W/AGE. The coding was straightforward for two rea-
sons: 1) Montague’s approach, of associating semantic
rules with syntactic rules of English, is very similar in
concept to that of an attribute grammar, and 2) W/AGE
is implemented as a set of library functions that are
added to a higher-order functional programming lan-
guage. Montague’s functional denotations can easily
be coded directly in that functional language.

Montague did not provide complete details for
the denotations of some natural-language constructs
and therefore we had to fill in some parts. For ex-
ample, we developed a compositional semantics for
negation [3] using ideas from Montague and Iwanska
[13]. We also developed two compositional seman-
tic schemes for adjective-noun combinations [1]. In
both of these endeavors, we found that the use of a
higher-order functional-programming language greatly
simplified our task.

6. Conclusions and future work

We have described a new (LRRP) SpeechWeb ar-
chitecture. We have explained how it differs from other
architectures currently in use, and why it is preferable
especially for use with lightweight end-user devices.
Our investigation has also demonstrated that:

1. Conventional web services, and the simple CGI
protocol, are sufficient to support an LRRP
SpeechWeb that supports simple queries.

2. An LRRP SpeechWeb browser can be constructed
as a single VXML page executing on an end-user
device. Application-specific recognition gram-
mars can be downloaded in realtime and used to
recognize speech locally.

3. Commercial grammar-based speech recognizers,
such as that used in IBM’s VXML interpreter, can
achieve good accuracy for real applications with
query languages having billions of queries.

4. Recognition accuracy can be improved by encod-
ing semantic constraints in the syntax rules of
grammar-based speech recognition.

5. Responsive natural-language query processors are
relatively easy to construct as executable specifi-
cations of attribute grammars.

6. Montague Semantics is useful as the basis for
natural-language query processing.

Currently, we are:

1. Developing a site from which our browser and the
W/AGE environment can be freely downloaded.

2. Extending the compositional semantics to accom-
modate more complex verb phrases [19].

3. Investigating ways to generate voice data-input ap-
plications automatically from XML schemas [9].

4. Investigating weighted combined grammars in
LRRP SpeechWeb browsers. This may lead to
good accuracy together with good robustness.

5. Investigating other communication protocols in or-
der to support dialogues.

As soon as J2ME/VXML-enabled cellphones become
available, we will port our LRRP SpeechWeb browser
onto these phones and provide the first-ever flexible,
scalable and economic SpeechWeb that allows speech
services to be deployed as easily as conventional web
services. The major challenge will then be how to en-
courage widespread use of the technology, in order to
facilitate the creation of a large public-domain Speech-
web.

Acknowledgements

The authors acknowledge the support provided by
the Natuaral Sciences and Engineering Council of
Canada.

References

[1] Abdullah, N., “Two compositional semantics for ad-
jective/noun combinations”, Master’s Thesis,School of
Computer Science, University of Windsor, ON, Canada,
2003.

[2] Dowty, D. R., Wall, R. E. and Peters, S. Introduction
to Montague Semantics. D. Reidel Publishing Company,
Dordrecht, Boston, Lancaster, Tokyo, 1983.

[3] Frost, R. A., and Boulos, P., “An efficient composi-
tional semantics for natural-language database queries
with arbitrarily-nested quantification and negation”, Pro-
ceedings of the 15th Canadian Conference on Artificial In-
telligence, AI’2002, May 2002, University of Calgary, Al-
berta. Lecture Notes in Artificial Intelligence, No. LNAI
2338. Eds. Cohen and Spencer. Springer-Verlag, Berlin,
2002, pp. 252–267.

[4] Frost, R. A.. and Chitte, S., “A New Approach for Pro-
viding Natural-Language Speech Access to Large Knowl-
edge Bases”, Proc. of PACLING ’99, The Conference
of the Pacific Association for Computational Linguistics,
1999, pp. 82–90.

[5] Frost, R. A., “W/AGE The Windsor Attribute Gram-
mar Programming Environment”, IEEE Symposia on Hu-
man Centric Computing Languages and Environments
HCC’2002, 2002, pp. 96–98.

[6] Frost, R. A., “SpeechWeb: A web of natural-language
speech applications”, Proceedings of the AAAI ’02 Intel-
ligent Systems Demonstrations (ISD), U. of Alberta, Ed-
monton, 2002, pp. 998–999.

[7] Frost, R. A., “SpeechNet: A network of hyperlinked
speech-accessible objects”, Proceedings of the IEEE
WECWIS International Workshop on Advanced Issues
of E-Commerce and Web-Based Information Systems.
Joint Workshop of (3rd RTDB and 2nd DARE),San Jose,
April 1999, pp. 71–76.

[8] Frost, R. A., “A Natural-Language Speech Interface Con-
structed Entirely as a Set of Executable Specifications”,
In Proceedings of the Intelligent Systems Demonstrations,
of the Eleventh National Conference on Artificial Intel-
ligence, 908–909. AAAI’99, Orlando, Florida: AAAI
Press, 1999, pp. 908–909.

[9] Hanna, F., “Survey of automatic generation of voice ap-
plications”, School of Computer Science, 60–510 Survey
Report. University of Windsor, 2003.

[10] Hartzell, D., “Overcoming hurdles for deployment
of speech services”, Wireless Future Magazine. Ja-
nury/February 2003 issue.

[11] Hartzell, D., “Invited Talk: Simplyfying speech-enabled
solutions — or deploying speech-enabled services should
be as easy as deploying web services”, Voice Enabled
Services 2003. London U.K. 13th-15th Jan. 2003.

[12] IBM http://www-106.ibm.com/developerworks/library/i-
voicestudio/ 2003.

[13] Iwanska, L., “A General Semantic Model of Negation in
Natural Language: Representation and Inference”, Doc-
toral Thesis, Computer Science, University of Illinois at
Urbana-Champaign, 1992.

[14] Lucas, B.,”VoiceXML for web-based distributed conver-
sational applications”, Communications of the ACM43
(9), 2000, pp. 53–57.

[15] Moody, T. S., “The effects of restricted vocabulary size
on voice discourse structures”, Ph.D. Thesis, North Car-
olina State University, 1998.

[16] Montague, R., Formal Philosophy: Selected Papers of
Richard Montague, edited by R. H. Thomason. Yale
University Press, New Haven CT, 1974.

[17] Paaki, J., “Attribute Grammar Paradigms — a High-
Level Methodology in Language Implementation”, ACM
Computing Surveys, 27 (2), 1995, pp. 196–256.

[18] PipeBeach : www.pipebeach.com 2003

[19] Roy, M. Master’s Thesis ProposalSchool of Computer
Science, University of Windsor, ON, Canada, 2003.

[20] Shi, Y., “Investigation of Recognition-Grammar Design”
Master’s Thesis,School of Computer Science, University
of Windsor, ON, Canada, 2003.

